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Abstract— Rigorous mathematical Method of Moments (MoM) for analyzing various radiating spherical structures is 
presented in this paper by using Dyadic Green's Functions (DGF) in conjunction with Mixed Potential Integral 
Equation (MPIE) formulation. With the aid of linear Rao-Wilton-Glisson (RWG) triangular basis functions and by 
converting spherical DGF to Cartesian DGF, a conformal dipole antenna over a Perfect Electric Conductor (PEC) 
sphere is analyzed. Mutual couplings between elements of a conformal dipole antenna array in an unbounded free 
space and over a conducting sphere are also investigated. Good agreement between the results obtained from the 
proposed method and asymptotic approximation as well as those of commercial simulator packages shows accuracy 
and high convergence speed of the presented method. 
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I. INTRODUCTION  
By using DGF, a field component in an arbitrary 

direction can be expressed in terms of a current vector 
component [1],[2]. Electromagnetic fields in a specific 
direction have been calculated for a small electric and 
magnetic dipole located inside a multilayer sphere [3]. 
In [4], an antenna structure over cylindrical shell has 
been analyzed by using spectral domain Green’s 
functions. The resonance problem of a circular 
microstrip disk mounted on a spherical surface has 
been studied theoretically by utilizing Green’s function 
formulation in spectral domain [5]. Closed form 

equations using DGF containing a series of spherical 
harmonics have been used to evaluate electric and 
magnetic fields in such structures [2]. Archimedean 
spiral antennas printed on a multilayer dielectric 
sphere have been investigated in [6] utilizing the 
MoM. In [7], full-wave analysis of an arbitrary shape 
antenna placed on a layered sphere has been studied 
using DGF in combination with MPIE formulation for 
input impedance problems. In [8], dyadic Green’s 
function has been expanded asymptotically which 
results in a significant increase in convergence rate of 
spherical harmonics series. With this approach, 
conformal antenna problems have been solved by 
evaluating fundamental coefficients in [9] using 



spherical Bessel and Hankel functions approximation 
for large arguments. This technique is efficient for 
computation of input impedance for conformal 
antennas mounted on spherical layers. It is to be noted 
that due to different radial distances of field and source 
points, asymptotic approach cannot be used in 
computation of near or far field components of 
electromagnetic fields.  

In this paper, explicit formulas are extracted to 
solve various radiating structures where source region 
is divided into linear triangles. Then a spherically 
conformal dipole antenna fed at its center located over 
a PEC sphere is analyzed. Next, the input admittance 
and radiation pattern of such a dipole antenna are 
calculated by using DGF. To increase spherical 
harmonics series convergence speed, the double 
summation in the series is transformed into a single 
summation by using associated Legendre function 
theorem. DGF transformation from spherical to 
Cartesian coordinates is also accomplished in this 
paper, which is used to efficiently compute radiation 
fields of various spherical antenna structures with 
linear triangular mesh generations. Mutual couplings 
between the elements of a conformal dipole antenna 
array located in free space or over a conducting sphere 
core are studied. Comparison of the results obtained 
from the proposed method with those of CAD 
simulations clearly shows the ability and accuracy of 
presented method. 

II. THEORY 
Figure 1 illustrates a conformal dipole antenna 

structure located in the vicinity of a PEC sphere. As 
shown in this figure, the structure can be divided into 
three regions. The conformal antenna is located at the 
boundary of layers 1 and 2. Region 3 is considered as 
a conducting sphere. In this case, the PEC is modeled 
by ,μ 0 [7]. Therefore, propagation constant in 
layer 3 is finite and numerical modeling of the antenna 
is feasible [7].  

A. Method of Moment Formulation 
One of the efficient numerical methods with high 

preprocessing gain for analyzing electromagnetic 
structures is the method of moment where the source 
region must be divided into cells. In this method, the 
unknown functions which are usually the source 
currents or charges are obtained via an integral 
equation formulation with appropriate Green’s 
function. Such integral equations can be in space 
domain, spectral domain, or both of these two 
domains. In general due to meshing the finite area 
source, methods based on integral equation 
formulations are more accurate and require less 
memory and time. Dividing the source region into 
small triangles and considering the common edge 
between two cells as a current element, and expanding 
the current into triangular basis functions ( nf ), the 
source current can be defined as [10]: 
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where N is the number of non-boundary edges and In 
are unknown coefficients which should be obtained 

from MPIE formulation [10]. Therefore, if the source 
region is segmented by linear triangular cells, 
unknown current coefficients in the antenna can be 
determined by applying surface RWG basis functions 
and satisfying the boundary conditions [10]. Since 
tangential component of electric field vanishes on 
perfect conducting metal, impedance matrix for MPIE 
equation can be written as [7]: 
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in which AG  and G  are the magnetic dyadic and 
the electric scalar Green’s functions, respectively. 
Galerkin’s method is applied for test functions and 
electric field is considered as: 

jE A  (3) 
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Figure 1. A conformal dipole antenna over a PEC sphere 

Integration over the testing triangles can be 
avoided by using the centers of field cells and 
approximate Galerkin’s method. Applying 3-point 
Gauss quadrature is sufficient for integration over 
source triangles [7]. 

B. Antenna in the Vicinity of Conductor Sphere 
For full wave analysis of conformal dipole 

antenna over PEC sphere, the scattering components 
of electric field are important. These components can 
be obtained by using current distribution and field 
points in layer 1 which leads to [9]: 
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where 0
m  is the Kronecker delta and ,M N vectors 

are Eigen vectors in spherical coordinates system with 
orthogonal properties explained in various references. 
Superscript (2) denotes spherical Hankel Function of 
the Second Kind. 11

,M Nb are the dyadic coefficients 
expressed as [9]: 
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where ,
1
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1

H V
PR  are as 

presented in [9]. 

The convergence speed of series depends on 
dielectric constants and radius of spherical layers. 

Calculation of the double-summation of above 
DGF is exhausting and time-consuming since there are 
spherical harmonics in wave equation solution in 
spherical coordinates. The double summation in the 
spherical DGF can be reduced to an expression with 
only single summation by using the following relation 
[11]: 
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where cos cos cos ' sin sin 'cos( ').  

C. Spherical to Cartesian Transformation of DGF 
In order to obtain electromagnetic field 

components, we require multiplying dyadic Green’s 
function and current element vector components for 
the case of interest. It is crucial to note that such 
multiplication must be performed in the same 
coordinates. 

For the case that conformal antenna area is divided 
in curvilinear triangles (as shown in Fig.2 (a)), current 
components to be considered are J  and J  which are in 
harmony with spherical components of DGF [7]. 
However choosing curvilinear meshing in general can 
be complicated as compared with linear triangular 
meshing considered in this paper. 

As current elements on common edges of linear 
meshes have Cartesian components, a new approach 
for dyad and vector multiplication is presented in this 
paper. Converting a current vector V which connects 
two vertices of a triangle, from Cartesian to spherical 
coordinates results to non-unique vectors because J  
and J  are different in each point of the edge such as 
Vx shown in Fig. 2(b). 

The drawback stated above can be greatly reduced 
if we employ the centers of the field and source 
triangles in DGF calculation in spherical coordinates. 
Thus there are unique transformations of vectors from 
spherical to Cartesian and therefore conversion of a 
spherical dyad to a Cartesian dyad can be exactly 
implemented. Then the electric field vector can be 
expressed as: 
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f

s
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Thus by using triangular linear meshes in Cartesian 
coordinates only G  needs to be converted from 
spherical to Cartesian coordinates. For this purpose, 
each unit vector should be transformed from spherical 
to Cartesian coordinates. As DGFs represent 
interactions between field and source points, the first 
and second vectors of each dyad correspond to field 
and source points respectively. 

 
                      (a)                                                   (b) 
Figure 2. (a) Curvilinear triangle, (b) Linear triangle in the Cartesian 

coordinates with unique center point 

Based on the argument stated above, all nine 
components of a spherical dyad can be converted to a 
Cartesian dyad. As an example the conversion 
equation of ˆ ˆr r component of a dyad is extracted as 
follows: 
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in which subscripts f and s refer to field and source 
points respectively. Accordingly each spherical dyadic 

function of form 
( )
1
fs

G  can be converted to a 

Cartesian dyadic function
( )
2
fs

G . 

It should be noted that input impedance formula of 
a conformal antenna over a spherical shell can be 
extracted using addition theorem for spherical Hankel 
functions [11]. For conformal antenna over a 
multilayer sphere, when both source and field points 
are at the same distance from the sphere center, we do 

not need to consider 
( )fs
AG and it is only enough to 

compute ( )f sG . Thus input impedance of antennas 
located on a multilayer sphere can be obtained using 
DGF or asymptotic approximation formulas. 
Asymptotic approximation method yields a higher 
convergence speed in calculation antenna input 
impedance but it cannot be utilized for radiation 
pattern determination since field and source points are 
not at the same distance from the sphere center in this 
case. 

D. Array of Conformal Dipole Antennas 
The presented method can be utilized to compute 

mutual couplings between antenna elements of a 
conformal dipole antenna array located in free space or 
above a PEC sphere. Scattering matrix can be 
computed as follows [12]: 

1
0 0 ,S Y I Y Y I Y  (8) 

where I is the identity matrix and Y is admittance 
matrix. Y0 is the characteristic admittance of feed 
network. As delta gap voltage is used to excite the 
electric dipoles, it is advantageous to compute 
scattering matrix from admittance matrix. The 
components of admittance matrix are defined as [12]: 
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Therefore, for an array consisting of N elements, 
coupled currents due to an excited element on the 
center of the unexcited elements should be calculated. 

III. RESULTS 
To validate the present computation, a spherically 

conformal dipole antenna which is located at a 5.32-
cm distance from the origin is considered. The antenna 
physical length is /2 with  being the wavelength at 
antenna center frequency (f 0 = 3 GHz). The antenna is 
located 0.32cm above a 5cm radius sphere and the 
medium between the antenna and the sphere is 
assumed to be free space. The antenna input 
admittance and radiation pattern are determined and 
the results are compared with commercial software 
results. It is expected that the antenna response is 
similar to a linear thin /2 dipole antenna which is 
presented in [13]. In this example, the antenna has 
negligible thickness in comparison with wavelength 
and is located in xy as shown in Fig.1 (b). The antenna 
is divided to 120 triangular linear meshes and there are 
119 common edges between two adjacent plus and 
minus triangles. The delta gap voltage source is used 
to excite the dipoles. Impedance matrix and current 
distribution on common edges are computed using 
MoM. Besides utilizing DGF, asymptotic 
approximation method is also used which shows good 
agreement with the proposed method. 

In this case, at least 60 terms of electric scalar 
Green’s function should be considered to obtain exact 
solutions from MPIE. For input admittance 
calculation, due to conformal current distribution on 
the dipole, magnetic potential DGF is zero [10]. 

 
(a) 

 
(b) 

Figure 3. Input Admittance of spherical dipole antenna over PEC 
sphere. (a) conductance, (b) susceptance 

Figure 3 illustrates the results. To show input 
admittance convergence speed toward spherical 
harmonics, the input admittance at the center 
frequency of the antenna versus the number of terms in 
spherical harmonics series is illustrated in Fig. 4. It can 
be noticed from this figure that the input admittance of 
the antenna is converged when 25 terms of spherical 
harmonics in the summation are used. 

Electric field DGF with 30 terms of spherical 
harmonics is used to determine antenna radiation 
pattern. As it can be seen from Fig. 5, radiation pattern 
is directed to about 30° which is in good agreement 
with the results obtained from CST simulator [14]. It 
should be mentioned that at the shadow boundary on 
the conducting sphere, the incident wave excites 
creeping waves propagating along the sphere surface. 
Due to comparable dimension of the sphere to the 
wavelength, the creeping waves radiate surface 
diffracted waves [15]. 

 
Figure 4. Convergence of Input Admittance of a spherical dipole 

antenna over sphere 

 

Figure 5. Radiation Pattern of a spherical dipole antenna over PEC 
sphere 

In the following, two examples of conformal 
dipole antenna arrays located at the same radial 
distance from the coordinates center (Fig. 6) are 
analyzed and mutual couplings between their elements 
are investigated. d, defined in degrees, represents the 
distance between the centers of elements and can be in 
 or  direction. 
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Figure 6. A pair of conformal dipole antennas 

Figure 7 shows insertion loss and mutual coupling 
of a pair of spherical dipole antennas separated by a 
distance of 15° in  direction from each other and 
located in free space or above a conducting sphere. 
Some changes in the results can be noticed from Fig.7 
with and without the presence of the conducting 
sphere. Figure 8 demonstrates mutual coupling 
between two conformal dipoles over a PEC sphere for 
different separation distances in  direction. Figure 9 
illustrates mutual coupling between a pair of spherical 
dipoles located in free space or above a conducting 
sphere at the center frequency of the antennas versus d 
in  direction. 

Mutual couplings between the elements of an array 
of five conformal dipoles above a PEC sphere are also 
investigated. Each antenna element is separated from 
its adjacent element by a distance of 15° in  direction. 
The lowest dipole is considered as the first element 
and the third dipole is located at =0°. Figure 10 
shows the mutual couplings between the first three 
adjacent elements obtained from the presented method 
and Ansoft HFSS simulation. 

It can be noticed that the results obtained from the 
presented analysis methods based on DGF or 
asymptotic approximation are in good agreement with 
the results obtained from HFSS and CST softwares. 
However, simulator softwares are highly dependent on 
meshing the structure, probe modeling and the size of 
radiation box. Therefore, more time and memory is 
required in order to obtain precise and stable results 
from simulator packages. The proposed methods have 
more calculation speed and accuracy in comparison 
with the mentioned softwares. 

 
Figure 7. S-parameters of a pair of conformal dipole antennas 

 

 
Figure 8. Mutual coupling of a pair of conformal dipole antennas 

over a PEC sphere 

 
Figure 9. Mutual coupling of a pair of conformal dipole antennas 

versus d in  direction 

 
Figure 10. Mutual couplings of an array of five conformal dipole 

antennas over a PEC sphere 

IV. CONCLUSION 
In this paper, an efficient full-wave method to 

analyze various antennas over spherical multilayer 
structures has been presented. In this method, after 
meshing the antenna into linear triangles in Cartesian 
coordinates, by using MPIE formulation, the input 
admittance of a conformal dipole antenna over a PEC 
sphere has been computed. The infinite double 
summation has been transformed to a single 
summation using addition theorems for Legendre 
polynomials and spherical Hankel functions yielding 
an increase in the radiation pattern computation 
convergence speed. In order to determine electric field 
vectors at entire medium, conversion equations of a 
dyad from spherical to Cartesian coordinates has been 
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presented. To validate the proposed methods, mutual 
couplings between elements of a conformal dipole 
antenna array in free space or above a conducting 
sphere have been investigated. Accuracy of the 
proposed methods has been validated by comparing 
the results obtained from the presented methods with 
those obtained from commercial softwares. 
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